Creating TTables And
TFields At Runtime

by Bob Swart

We all know how to drop a
TTable component onto a
form, connectittoatable and open
it to get access to the data. But
what if we don’t have or don’t want
a form? What if there is nothing to
drop a table onto, not even a Data
Module or Web Module? In that
case we need to create the table
dynamically, and the fields of the
table, including the calculated and
lookup fields, which is what this
article is all about.

Creating Tables On Disk

First, of course we all know
TableBob, my Table-2-HTML or
Table-2-Source Wizard (if not,
check out Issue 31 for the article
and surf to www.drbob42.com/
tools/tablebob.htm for the latest
version). TableBob turns the
BIOLIFE.DB table into source code
to regenerate the table. Listing 1
shows the source code produced
by TableBob for BIOLIFE.DB.

We see that we can use a call to
CreateTable to create an entire
table dynamically, even including
indexes. Personally, | find this abil-
ity to create physical tables very
helpful when deploying applica-
tions, so I don’t need to ship empty
tables (or worse, tables still filled
with your test data). I've also used
these techniques to build a self-
maintaining internet guestbook.

In theory, it's even possible to
create referential integrity rela-
tions, but you need some low-level
BDE calls that | could never
entirely get to work (email me at
bob@bolesian.nl if you can show
me how, and I'll include the infor-
mation in an updated version of
this article, with the appropriate
credits, of course).

Obtaining Field Information

Once we have a table on disk, we
can again create a TTable compo-
nent, point it to the table on disk,

October 1998

and read information from the
table (or write new datatoit). For a
given, supposedly unknown, table,
we can even use the information
from the table itself to list the
number of fields, their type, etc
(Listing 2).

Note that just like in the first list-
ing, we're using the FieldDefs array
property of the TTable, and we
didn’t even need to open the table
to get our hands on the field defini-
tions, which are shown in Listing 3
for the BIOLIFE.DB table.

Of course we need to open the
table if we actually want to read
some information from it, or edit or

program BIOLIFE;
uses DB, DBTables;

begin

with TTable.Create(nil) do

try
Active := False;
TableType := ttParadox;
TableName := 'BIOLIFE.DB';
with FieldDefs do begin

Clear;

Add('Species No', ftFloat, 0, FALSE);
Add('Category', ftString, 15, FALSE);

insert/append data. After we've
opened the table, we can use the
Fields array property to get to the
fields’ DisplayNames, EditMask (if
any) and, most important proba-
bly, the DisplayText with the value
of the actual field in the current
record. Note that all this informa-
tion was not available when the
table was still closed, as FieldDefs
only contains field definition
information, not the actual table
contents and field ‘action’ informa-
tion we canfind in the Fields prop-
erty (Listing 4).

If we run this program on -
BIOLIFE.DB, we get the output in
Listing 5. Note that the FieldNames
are empty; we must get to the
DisplayName to get the name of the
field. Also note that the
DisplayText prints (MEMO) for
memo fields, and (GRAPHICS) for
graphic fields. This is exactly the
way they appear in a TDBGrid Or
Delphi’s Web Modules. To get the

Add('Common_Name', ftString, 30, FALSE);
Add('Species Name', ftString, 40, FALSE);
Add('Length (cm)', ftFloat, 0, FALSE);

Add('Length_In', ftFloat, 0, FALSE);

Add('Notes', ftMemo, 50, FALSE);

Add('Graphic', ftGraphic, 0, FALSE)

end;

with IndexDefs do begin
Clear;
Add('",

end;
CreateTable
finally
Free
end
end.

0 Above: Listing 1

program Analysel;
{$APPTYPE CONSOLE}
uses DB, DBTables;
var i: Integer;
begin
with TTable.Create(nil) do
try
DatabaseName := 'DBDEMOS';
TableName := 'BIOLIFE.DB';

'Species No', [ixPrimary,ixUniquel)

0 Below: Listing 2

FieldDefs.Update; { get FieldDefs without Opening table itself }

writeln;

for i:=0 to Pred(FieldDefs.Count) do begin

write('Field ',i,"'
write(' -

: ', FieldDefs[i].Name);
',FieldDefs[i].FieldClass.ClassName);

if FieldDefs[i].DataType = ftString then

write('[',FieldDefs[i].Size,']1");

writeln
end
finally
Free
end
end.

The Delphi Magazine

51

true contents of these fields, we
need to use the Value property or
the explicit AsString property,
which would yield the following
enhanced version of the program
so far:

if Fields[i]l.DataType = ftMemo then

write(* - *,Fields[i].Value)
else
write(* - ‘,Fields[i].DisplayText);

And this time, we indeed get the
full contents of the memo field
inside the table.

Creating Field Components
Now that we can obtain field type
and value information, it’s time to
put a little bit more structure to it.
For the given BIOLIFE.DB example
table, we should know by now the
types of each of the eight fields. So,
why not simply declare those eight
specific fields and assign them to
the table at runtime? This would be
equivalent to a right-click on the
Fields Editor and Add al11 fields by
the way.

The source snippet in Listing 6
will create the first TField compo-
nent, a TFloatField to be specific,
pointing to field Species No in the
Table. Unfortunately, an unex-
pected BDE exception will be
raised and reported on standard
output:

Exception EDatabaseError in
module ANALYSE4.EXE at 000315A2.
Field name missing.

The only way to get rid of this
exception is to make sure the
FieldName property is assigned
before the DataSet property gets
assigned, as follows:

SpeciesNo :=
TFloatField.Create(Table);
SpeciesNo.FieldName := ‘Species No’;

SpeciesNo.DataSet := Table;

After we change the order of the
DataSet and FieldName assign-
ments, we get the result we want
for this first field of the BIOLIFE
table: Species No: 90020. And thisis
only the start, of course. Once we
have a TxxxField component, we
have easy access to every property

52

00 Above: Listing 3

Field 0: Species No - TFloatField

Field 1: Category - TStringField[15]
Field 2: Common_Name - TStringField[30]
Field 3: Species Name - TStringField[40]
Field 4: Length (cm) - TFloatField

Field 5: Length_In - TFloatField

Field 6: Notes - TMemoField

Field 7: Graphic - TGraphicField

0 Below: Listing 4

program Analyse2;
{$APPTYPE CONSOLE}
uses DBTables;
var i: Integer;
begin
with TTable.Create(nil) do
try
DatabaseName := 'DBDEMOS';
TableName := 'BIOLIFE.DB';
Open; { Open table to get actual Fields information }
writeln;
for i:=0 to Pred(FieldCount) do begin
write('Field ',i,"': (',Fields[i].Name,"')"');
write(' displays "',Fields[i].DisplayName,'"");

write(' - ',Fields[i].DisplayText);
writeln
end;
Close
finally
Free
end
end.
Field 0: () displays "Species No" - 90020
Field 1: () displays "Category" - Triggerfish
Field 2: () displays "Common_Name" - Clown Triggerfish
Field 3: () displays "Species Name" - Ballistoides conspicillum
Field 4: () displays "Length (cm)" - 50
Field 5: () displays "Length_In" - 19.6850393700787
Field 6: () displays "Notes" - (MEMO)
Field 7: () displays "Graphic" - (GRAPHIC)

00 Above: Listing 5

program Analyse4;
{$APPTYPE CONSOLE}
uses DB, DBTables;

var
Table: TTable;
SpeciesNo: TFloatField;

begin

Table := TTable.Create(nil);

try
Table.DatabaseName := 'DBDEMOS';
Table.TableName := 'BIOLIFE.DB';

SpeciesNo := TFloatField.Create(Table);

SpeciesNo.DataSet := Table;

SpeciesNo.FieldName := 'Species No';

Table.Open;

00 Below: Listing 6

writeln(SpeciesNo.DisplayName,': ',SpeciesNo.DisplayText);

Table.Close
finally
SpeciesNo.Free;
Table.Free
end
end.

and method of that particular field
component (see the help for a
complete list).

Dynamic Calculated Fields

One of the great benefits of the
Delphi IDE when working with
TTable components, is the Fields
Editor. The best place to add all
fields you want to make visible to
your application, add new fields,
define lookup or calculated fields.
You can even use the Fields Editor
to drag and drop fields on your
Form. But right now, I'm more

The Delphi Magazine

interested in the ability to create
lookup or calculated fields.

To dynamically create a Calcu-
lated Field, we start just like any
other dynamic field, by creating an
instance of aTField component (or
a specialised type of field, such as
a TStringField or TIntegerField).
For example, let’s create a calcu-
lated field The Answer of type
TFloatField, for the BIOLIFE.DB
table.

As you’ll see in the source code
(Listing 7), we do not only need to
create a field of ‘kind’ fkCalculate,

Issue 38

we also need to create an
OnCalcFields event of type

procedure(DataSet: TDataSet)
of object;

meaning that it can’t be a regular
procedure, but it must be a class
method. So, in our small example,
we need to create a special class
TBTable, which | derived from
TTable (we need a TTable anyway),
that contains the CalcFields
method that gets assigned to the
OnCalcFields event handler of the
dynamic table. Using a TTable
derived class instead of a TDummy
class to host the CalcFields
method means we won’t introduce
a class we don’t really need.
Other than that, it's hardly
different from a regular fkData
field. We must assign the FieldName
and Fieldkind before we can assign
the DataSet (or we get the BDE
exception we saw earlier). And of
course, we get the expected result:
The Answer: 42

Dynamic Lookup Fields

For lookup fields, it gets a bit more
complicated, as we need another
DataSet to look the data up in, as
well as another Field component,
as will become clear shortly. Also,
four additional properties of the
‘lookup’ TField component must
be set in order to function as a
lookup field, namely: KeyFields,
LookUpDataset, LookUpKeyFields
and LookUpResultField. As an
example, let’s look at the source
code (see Listing 8) to create a
lookup field at runtime using the
two DBDEMOS tables CUSTOMER and
ORDERS.

0 Listing 8

program Analyse6;

{$APPTYPE CONSOLE}

uses DB, DBTables;

var
Customer,Orders: TTable;
LookupField: TStringField;
CustNo: TFloatField;

begin
Customer := TTable.Create(nil);
Orders := TTable.Create(nil);

try
Customer.DatabaseName := 'DBDEMOS';
Customer.TableName := 'CUSTOMER.DB';

Customer.Open;
Orders.DatabaseName := 'DBDEMOS';
Orders.TableName := '"ORDERS.DB';

CustNo := TFloatField.Create(Orders);

CustNo.FieldName := 'CustNo';
CustNo.DataSet := Orders;

LookupField := TStringField.Create(Orders);

54

program Analyse5;

{$APPTYPE CONSOLE}

uses DB, DBTables;

const CalcFieldName = 'The Answer';
type
TBTable = class(TTable)

procedure CalcFields(DataSet: TDataSet);

end;
procedure TBTable.CalcFields(DataSet: TDataSet);
begin
DataSet[CalcFieldName] := 42 { or some real calculation, of course }
end;

var
Table: TTable;
CalcField: TFloatField;
begin
Table := TTable.Create(nil);
try
Table.DatabaseName := 'DBDEMOS';
Table.TableName := 'BIOLIFE.DB';

CalcField := TFloatField.Create(Table);
CalcField.FieldName := CalcFieldName;
fkCalculated;

CalcField.FieldKind :=
CalcField.DataSet := Table;

Table.OnCalcFields := Table.CalcFields;

Table.Open;

{ default - fkData }

writeln(CalcField.DisplayName,': ',CalcField.DisplayText);

Table.Close
finally
CalcField.Free;
Table.Free
end
end.

Rather than going through the
trial and error | had to face, let’s
just concentrate on the fact that
the KeyField of the LookupField
must exist as a separate field com-
ponent as well. Otherwise, a BDE
exception field CustNo not found
will be raised, which is quite odd,
since field CustNo is both part of the
CUSTOMER table and the ORDERS table
(so it took a while before | found a
way to get rid of this exception).

Apart from that little unexpected
problem (and | wonder why we
can’t get on without it), we need to
define a KeyField to connect to a
LookupKeyField from a
LookupDataSet, and once they con-
nectt we can return a
LookupResultField, which will
indeed be the actual (lookup)
value for our lookup FieldName.

Conclusion

In this article, we’ve seen how to
create dynamic table and dynamic
fields, including calculated fields

Orders.Open;

Orders.Close;
Customer.Close
finally

CustNo.Free;
Orders.Free;
Customer.Free
end
end.

The Delphi Magazine

LookupField.FieldName
LookupField.FieldKind
LookupField.DataSet
LookupField.KeyFields := 'CustNo"';
LookupField.LookupDataSet := Customer;
LookupField.LookupKeyFields := 'CustNo';
LookupField.LookupResultField := 'Company"';

LookupField.Free;

0 Listing 7

and lookup fields. We encountered
a number of peculiar exceptions,
and learned a few new tricks along
the way (at least | did).

The techniques discussed in
this article will of course be partic-
ularly helpful when writing
non-visual applications or DLLs for
the internet that don’t use any
Data Modules or Web Modules.

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is a profes-
sional knowledge engineer tech-
nical consultant using Delphi,
C++Builder and JBuilder for
Bolesian. In his spare time, Bob
likes to watch videos of Star Trek
Voyager and Deep Space Nine
with his 4.5-year-old son Erik
Mark Pascal and his 2-year-old
daughter Natasha Louise
Delphine.

'Customer Company';
fkLookup; { default - fkData }
:= Orders;

writeln(LookupField.DisplayName,"':
(',CustNo.DisplayText,') ', LookupField.DisplayText);

Issue 38

	Creating Tables On Disk
	Obtaining Field Information
	Creating Field Components
	Dynamic Calculated Fields
	Dynamic Lookup Fields
	Conclusion

